PLAN DE PREVENTION DES RISQUES NATURELS D'INONDATION
DE L'OUCHE AMONT
DE LA COMMUNE DE GISSEY-SUR-OUCHE

Note de présentation

Vu pour être annexé à l'arrêté préfectoral n° 384 du 27 juin 2014

Le Président,

[Signature]
Pascal MAILHOS

Réalisation HYDRATEC / ASCONIT
Edition : mars 2014
SOMMAIRE

1 DEMARCHE NATIONALE DE LUTTE CONTRE LES INONDATIONS 7

2 LE PPRI : ROLE – ELABORATION – CONTENU 8
 2.1 ROLE DU PPRI 8
 2.2 LA ZONE D’ETUDE 8
 2.3 PERIMETRE D’ETUDE 9
 2.4 PROCEDURE D’ELABORATION DU PPRI 9
 2.5 CONTENU DU PPRI 10

3 HYDROLOGIE DE L'OUCHE 11
 3.1 GENERALITES 11
 3.2 PRESENTATION DU BASSIN VERSANT DE L'OUCHE 13
 3.3 STATIONS DE MESURE DES DEBITS 14
 3.4 CRUES HISTORIQUES 14
 3.4.1 Crues de l'Ouche 15
 3.4.2 Crues du Rieux et du Charban 16
 3.5 CRUES DE REFERENCE 16

4 DEFINITION DE L’ALEA INONDATION 18
 4.1 CONSTRUCTION ET CALAGE DU MODELE HYDRAULIQUE 18
 4.2 DEFINITION DE LA CRUE DE REFERENCE 19
 4.3 CARACTERISATION DES NIVEAUX D’ALEA 19
 4.4 SYNTHESE DES ALEAS SUR LE TERRITOIRE DE LA COMMUNE 20

5 RECENSEMENT DES ENJEUX 21
 5.1 LA CLASSIFICATION DES ENJEUX 21
 5.2 METHODOLOGIE DE RECENSEMENT DES ENJEUX 23
 5.2.1 L’occupation du sol. 23
 5.2.2 Les enjeux spécifiques 23
 5.2.3 La consultation des acteurs locaux 24
 5.2.4 Le rendu cartographique 24
 5.3 SYNTHESE DU RECENSEMENT DES ENJEUX DE LA ZONE D’ETUDE 24
 5.4 SYNTHESE DES ENJEUX SUR LE TERRITOIRE DE LA COMMUNE 26

6 ZONAGE REGLEMENTAIRE 27

Note de présentation - PPRI Ouche amont
Mars 2014
1 ANNEXE 1 : REPERES DE CRUES

2 ANNEXE 2 : ANALYSE HYDROLOGIQUE : AJUSTEMENTS STATISTIQUES
2.1 METHODOLOGIE DE DETERMINATION DES DEBITS DE CRUE
2.1.1 Calcul du debit decennal - Ajustement de Gumbel
2.1.2 Calcul des debits de pointe superieurs a decennaux
2.2 SYNTHESE
2.2.1 Debots de crue de l'Ouche a Lusigny-sur-Ouche
2.2.2 Debots de crue de l'Ouche a la Bussiere-sur-Ouche
2.2.3 Debots de crue de l'Ouche a Sainte-Marie-sur-Ouche/ Pont de Sany
2.2.4 Debots de crue de l'Ouche a Plombieres-les-Dijon
2.3 SYNTHESE DES DEBITS DE PROJET

3 ANNEXE 3 : MODELISATION HYDRAULIQUE
3.1 PRESENTATION
3.1.1 Generalites
3.1.2 Crues modelees
3.1.3 Aire d'etude, emprise du modele
3.2 CONSTRUCTION DU MODELE HYDRAULIQUE
3.2.1 Le logiciel de simulation HYDRARIV
3.2.2 Donnees topographiques et bathymetriques
3.2.3 Schematisation
3.2.4 Definition des apports hydrologiques
3.2.5 Calage du modele

Note de presentation - PPRI Ouche amont
Mars 2014
Table des illustrations

Tableau 1 - Caractéristiques de l'Ouche et de son bassin versant ... 13
Tableau 2 - Caractéristiques des stations hydrométriques .. 14
Tableau 3 - Débits estimés au pont de Plombières-lès-Dijon pour les crues historiques 15
Tableau 4 - Débits et périodes de retour des crues historiques, estimation des débits décennal et centennal au droit des stations de mesure .. 17
Tableau 5 - Territoire en zone inondable par commune ... 24
Tableau 6 - Répartition des zones inondables par type d'aliéa ... 25
Tableau 7 - Occupation du sol en zone inondable .. 25
GLOSSAIRE

Bassin versant : surface délimitée par des points hauts sur laquelle tous les ruissellements sont collectés vers un point bas correspondant à un fossé ou un cours d'eau.

Bief : secteur d'un cours d'eau compris entre 2 chutes ou 2 séries de rapides. Généralement, les vitesses du courant y sont faibles.

Crue : gonflement d'un cours d'eau dû à des apports pluviométriques importants jusqu'à débordement de son lit mineur ; la cote du cours d'eau en crue est alors nettement supérieure à sa cote habituelle.

Curage : Extraction de matériaux alluviaux dans le lit de la rivière provoquée soit par l'homme (curage mécanique) soit par les écoulements de crue (curage hydraulique).

Les curages mécaniques sont interdits dans les lits mineurs des cours d'eau. Ils peuvent toutefois être autorisés dans certains cas (nécessité pour la sécurité des personnes par exemple) après établissement d'une demande d'autorisation.

Embâcle : terme général désignant un amoncellement de troncs d'arbres, de débris divers dans un cours d'eau, pouvant former obstacle lors d'une crue.

Étiage : débit le plus faible de l'année, ou niveau moyen des basses eaux établi sur plusieurs années d'observation.

Exutoire : point de déversement d'un bassin versant.

Hydrogramme : courbe représentant les débits en fonction du temps en un point donné (lors d'une crue).

Laisse de crue : limite supérieure atteinte par les écoulements de crue et matérialisée en général par des dépôts d'alluvions ou de corps flottants (bois morts,...).

Ligne d'eau : profil en long de la surface d'un courant d'eau dans un canal ouvert dit "à surface libre" ou dans un cours d'eau.

Lit majeur : zone d'écoulements occupée par une rivière en crue (plaine d'inondation).

Lit mineur : chenal d'écoulement creusé par la rivière pour les débits ordinaires (débits non débordants).

Modèle mathématique : outil de simulation informatique permettant de calculer avec les formules de l'hydraulique les conditions de débit et de hauteur en fonction du temps en tout point d'un cours d'eau, et de représenter ainsi les écoulements dans les conditions d'aménagement actuelles ou futures. La représentation des modèles peut être filaire ou bidimensionnelle.

Module : débit moyen du cours d'eau.
Morphologie du lit : description de la forme du fond et du tracé du cours d'eau, et de ses évolutions dans le temps et dans l'espace.

Nappe phréatique, nappe libre : eau qui se trouve dans la zone de saturation du sous-sol. Cette eau peut alimenter ou drainer des cours d'eau superficiels.

Période de retour : La période de retour d'une crue T, exprimée en années, correspond à la crue maximale, exprimée en m³/s, observée une fois dans ce laps de temps T. Par exemple la crue décennale est l'événement maximal ne pouvant se produire que 10 fois sur une durée de 100 ans ; l'intervalle entre deux événements décennaux peut être inférieur à 10 ans ou supérieur à plusieurs décennies. Les deux crues les plus fortes sur une période de 100 ans seront au moins cinquantennales.

Protection de berge : ouvrage hydraulique servant à stabiliser la berge et à supprimer les érosions. Les protections peuvent être de plusieurs types : enrochements, murs en béton, gabions, plantations,...

Recalibrage : action consistant à reprofiler le lit et les berges dans le but d'agrandir la section hydraulique de la rivière. Le recalibrage peut entraîner un déséquilibre hydrodynamique du cours d'eau (déséquilibre entre la capacité de transport et la charge solide de la rivière) et se révéler à terme inefficace voir dangereux (réalluvionnement progressif du lit, érosion régressive du fond,...).

Remous : perturbation de la ligne d'eau se propageant vers l'amont et provoquée par une influence aval.

Rugosité du lit : grandeur utilisée en hydraulique pour caractériser la résistance aux écoulements d'une conduite ou d'un cours d'eau. Pour un cours d'eau, le coefficient de rugosité intègre l'aspect des berges et du lit (taux d'encombrement, enrochements éventuels, broussailles, perré en béton,...).
1 DEMARCHE NATIONALE DE LUTTE CONTRE LES INONDATIONS

Le risque inondation constitue le principal risque naturel en France. L’État met ainsi en œuvre une politique de prévention des risques, qui vise à permettre un développement durable des territoires en assurant une sécurité maximum des personnes et un très bon niveau de sécurité des biens. Cette politique poursuit les objectifs suivants :

- Mieux connaître les phénomènes et leurs incidences,
- Assurer lorsque cela est possible une surveillance des phénomènes naturels,
- Sensibiliser et informer les populations sur les risques les concernant et sur les moyens de s’en protéger,
- Prendre en compte les risques dans les décisions d’aménagement,
- Adapter et protéger les installations actuelles et futures aux phénomènes naturels,
- Tirer des leçons des événements naturels exceptionnels qui se produisent.

Le Plan de Prévention des Risques naturels est l’outil privilégié de cette politique.
2 LE PPRI : ROLE – ELABORATION – CONTENU

2.1 ROLE DU PPRI

Les Plans de Prévention des Risques d’Inondation sont établis en application des articles L.562-1 et suivants et R.562-1 et suivants du code de l’environnement. Le PPRI répond aux objectifs suivants :
- prévenir les dommages aux biens et aux activités existantes et futures en zone inondable,
- prévenir le risque humain en zone inondable,
- maintenir le libre écoulement et la capacité d’expansion des crues en préservant l’équilibre des milieux naturels.

Pour ce faire, ces plans ont pour objet, en tant que de besoin :
- 1° de délimiter les zones exposées aux risques, en tenant compte de la nature et de l’intensité du risque encouru, d’y interdire tout type de construction, d’ouvrage, d’aménagement ou d’exploitation agricole, forestière, artisanale, commerciale ou industrielle ou, dans le cas où des constructions, ouvrages, aménagements ou exploitations agricoles, forestières, artisanales, commerciales ou industrielles, notamment afin de ne pas aggraver le risque pour les vies humaines, pourraient y être autorisés, prescrire les conditions dans lesquelles ils doivent être réalisés, utilisés ou exploités ;
- 2° de délimiter les zones qui ne sont pas directement exposées au risque mais où des constructions, des ouvrages, des aménagements ou des exploitations agricoles, forestières, artisanales, commerciales ou industrielles pourraient aggraver des risques ou en provoquer des nouveaux et y prévoir des mesures d’interdiction ou des prescriptions telles que prévues au 1° ;
- 3° de définir les mesures de prévention, de protection et de sauvegarde qui doivent être prises, dans les zones mentionnées au 1° et au 2°, par les collectivités publiques dans le cadre de leurs compétences, ainsi que celles qui peuvent incomber aux particuliers ;
- 4° de définir dans les zones mentionnées au 1° et au 2°, les mesures relatives à l’aménagement, l’utilisation ou l’exploitation des constructions, des ouvrages, des espaces mis en culture ou plantés existants à la date de l’approbation du plan qui doivent être prises par les propriétaires, exploitants ou utilisateurs.

2.2 LA ZONE D’ETUDE

La zone d’étude concerne 6 communes de la vallée de l’Ouche amont :
- Lusigny-sur-Ouche
- Bligny-sur-Ouche
- Gissey-sur-Ouche
- Sainte-Marie-sur-Ouche
- Flaurey-sur-Ouche
- Velars-sur-Ouche

La zone d’étude concerne les inondations par débordements de l’Ouche amont et de ses principaux affluents : le Rieux et le Chamban.

Note de présentation - PPRI Ouche amont Mars 2014
2.3 **PERIMETRE D’ETUDE**

Le périmètre d’étude du présent PPRI concerne le territoire de la commune de Gissey-sur-Ouche.

Cette commune est impactée par les débordements de l'Ouche.

2.4 **PROCEDURE D’ELABORATION DU PPRI**

L’élaboration du PPRI est menée par le préfet qui désigne le service déconcentré de l’Etat qui sera chargé d’instruire le projet.

La procédure normale d’élaboration d’un PPRI comporte six phases :

1) **arrêté de prescription par le préfet.** Cet arrêté est publié et notifié aux maires, il comporte les modalités de concertation.

2) **élaboration du projet.**

3) **consultation** des conseils municipaux des communes concernées, autres consultations éventuelles (conseils généraux, régionaux, du centre national de la propriété forestière, de la chambre d'agriculture) et **enquête publique.**

4) **projet éventuellement modifié.**

5) **arrêté d’approbation du PPRI** par le préfet qui est publié, affiché en mairie. Le dossier est mis à disposition du public.

6) **Annexion dans les documents d’urbanisme** (POS, PLU, ...).
2.5 **Contenu du PPRI**

Le document final du PPRI se compose d'une note de présentation, de documents graphiques et d'un règlement.

La note de présentation expose : les raisons de la prescription du PPRI, les phénomènes naturels connus, les aléas, les enjeux, les objectifs recherchés pour la prévention des risques et le choix du zonage.

Les documents graphiques sont composés de 3 jeux de cartes présentant : l'aléa, les enjeux au regard de la vulnérabilité, le zonage réglementaire.

Le règlement précise : les mesures d'interdiction, d'autorisation et les prescriptions, les mesures de prévention, de protection et de sauvegarde. Le règlement mentionne, le cas échéant, celles des mesures dont la mise en œuvre est obligatoire et le délai fixé pour leur mise en œuvre.
3 HYDROLOGIE DE L'OUCHE

L'analyse hydrologique a pour objectif de quantifier les débits de crue de l'Ouche et de ses principaux affluents. Elle s'appuie sur une étude statistique des débits mesurés sur le bassin versant et sur une étude détaillée des crues historiques : mécanismes de genèse et fréquences d'occurrence.

Ces éléments permettent de définir les caractéristiques des événements de référence pour lesquels ont été réalisées les cartes d'aléa.

3.1 GÉNÉRALITÉS

La carte ci-après présente le bassin versant global de l'Ouche ainsi que les sous bassins versants de ses principaux affluents.
La géologie du bassin est complexe avec des secteurs marneux peu perméables et une dominante de formations calcaires perméables (karst), influençant les débits d’étiages. Ce bassin versant présente deux unités structurales :

- les plateaux calcaires jurassiques à l’Ouest de Dijon (Arrière Côte et Montagne),
- le fossé d’effondrement tectonique Saône-Bresse à l’Est de Dijon.

La pluviométrie moyenne annuelle touchant le bassin versant est de l’ordre de 850 mm, ce qui est comparable avec la moyenne nationale. Les orages peuvent être violents et générer des lames d’eau importantes en quelques heures (cumul de la pluie journalière de retour 10 ans de 55 à 60 mm). Compte tenu de la modestie des altitudes et de la faiblesse des pluies hivernales, le rôle de la neige sur les crues de l’Ouche est plutôt faible.

3.2 Présentation du bassin versant de l’Ouche

L’Ouche est un affluent rive droite de la Saône d’une longueur totale de 95 km. Son bassin versant a une surface totale de 931 km². Les caractéristiques géométriques du bassin de l’Ouche jusqu’à la confluence avec la Saône sont données dans le Tableau 1.

<table>
<thead>
<tr>
<th>Etendue</th>
<th>Linéaire du cours d’eau (km)</th>
<th>Bassin versant (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>De la source à Dijon</td>
<td>51</td>
<td>655</td>
</tr>
<tr>
<td>De la source à la confluence avec le Suzon</td>
<td>62</td>
<td>844</td>
</tr>
<tr>
<td>De la source à la confluence avec la Saône</td>
<td>95</td>
<td>931</td>
</tr>
</tbody>
</table>

Tableau 1 - Caractéristiques de l’Ouche et de son bassin versant

L’Ouche prend sa source à une altitude de 375m dans le sud du département de la Côte d’Or sur la commune de Lusigny-sur-Ouche. A l’amont de Dijon, la vallée de l’Ouche est caractérisée par un large bassin versant.

L’Ouche traverse le lac artificiel du Chanoine Kir avant d’entrer dans Dijon. Ce lac occupe une surface de 38 ha pour une profondeur d’environ 3.5 m. Le niveau d’eau est régulé par deux vannes situées à l’aval du lac et capables de laisser transiter un débit de 230 m³/s, c’est-à-dire supérieur au débit centennal. Au-delà de ce débit, le niveau dans le lac augmenterait.

A l’aval de l’agglomération, l’Ouche rejoint la vallée basse qui est constituée par un bassin versant plus étroit large de 2 km en moyenne. Elle se jette en rive droite de la Saône à Echenon.

La pente générale de la rivière est faible et n’excède pas 2 pour mille à partir de l’aval de Lusigny-sur-Ouche; les écoullements y sont par conséquent relativement lents.

La Vandenesse, principal affluent rive gauche de l’Ouche amont, prend sa source au village de Beaume et se jette dans l’Ouche à Crugey. Longue de 17,6 km, son bassin versant draine une surface totale de 127 km².
Le Rieux et le Chamban sont tous deux des affluents rive gauche de l'Ouche amont :

- **Le Rieux** a une longueur totale de 2.3km. Son bassin versant a une surface totale de 2.7km².

 Il prend sa source sur la commune de Lusigny-sur-Ouche et se jette dans l'Ouche en aval de la commune.

- **Le Chamban** a une longueur totale de 2.8 km. Son bassin versant a une surface totale de 40 km².

 Il prend sa source sur la commune de Vic-des-Prés et se jette dans l'Ouche à Bligny-sur-Ouche.

3.3 **STATIONS DE MESURE DES DEBITS**

Le réseau de mesures permettant la surveillance des crues de l'Ouche se compose sur le secteur concerné (ou en aval immédiat) de 4 stations (dont 3 en fonctionnement).

Les caractéristiques des stations présentes sont données dans le Tableau 2.

<table>
<thead>
<tr>
<th>Station</th>
<th>Cours d'eau</th>
<th>Années de mesure</th>
<th>Bassin versant contrôlé</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lusigny-sur-Ouche</td>
<td>Ouche</td>
<td>1970 - 1983</td>
<td>46.4 km²</td>
</tr>
<tr>
<td>La Bussière-sur-Ouche</td>
<td>Ouche</td>
<td>1985 -2014</td>
<td>313 km²</td>
</tr>
<tr>
<td>Sainte-Marie-sur-Ouche/</td>
<td>Ouche</td>
<td>1985 -2014</td>
<td>442 km²</td>
</tr>
<tr>
<td>Pont de Pany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plombières-lès-Dijon</td>
<td>Ouche</td>
<td>1964 - 2014</td>
<td>651 km²</td>
</tr>
</tbody>
</table>

Tableau 2 - Caractéristiques des stations hydrométriques

3.4 **CRUES HISTORIQUES**

La connaissance des crues historiques est fondamentale pour la compréhension des écoulements en crue sur l'ensemble du bassin versant. Des rencontres avec les différents syndicats de rivière, les communes et les riverains ont été réalisées.

L'analyse bibliographique des études existantes et les enquêtes de terrain ont permis de recueillir des repères de crue, qui ont été nivelés par un géomètre. Ces repères concernent principalement les crues de 1965 et 2001 sur l'ensemble des cours d'eau concernés.

L'ensemble des repères de crue collectés est présenté en annexe 1.

Note de présentation - PPRI Ouche amont
Mars 2014
3.4.1 Crues de l'Ouche

A partir de 1965, les hydrogrammes de crue ont pu être mesurés à la station de Plombières-lès-Dijon. Le **débit maximal de la crue d'octobre 1965 a été estimé à 177 m³/s** (jaugeage à la pointe de crue aux Trois Ponts– **Etude des inondations de l'Ouche dans l'agglomération dijonnaise pour une crue de type 1965 – Sogréah 1994).

Les débits de pointe évalués ou estimés à la station de Plombières pour ces différentes crues historiques sont présentés dans le **Tableau 3**.

<table>
<thead>
<tr>
<th>Crue</th>
<th>Débit de pointe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1866</td>
<td>195 m³/s</td>
</tr>
<tr>
<td>1910</td>
<td>180 m³/s</td>
</tr>
<tr>
<td>1930</td>
<td>172 m³/s</td>
</tr>
<tr>
<td>oct-65</td>
<td>177 m³/s</td>
</tr>
<tr>
<td>nov-68</td>
<td>152 m³/s</td>
</tr>
<tr>
<td>déc-82</td>
<td>134 m³/s</td>
</tr>
<tr>
<td>déc-96</td>
<td>111 m³/s</td>
</tr>
<tr>
<td>mars-01</td>
<td>151 m³/s</td>
</tr>
<tr>
<td>mai-13</td>
<td>191 m³/s</td>
</tr>
</tbody>
</table>

Tableau 3 - Débits estimés au pont de Plombières-lès-Dijon pour les crues historiques

La **plus forte crue connue** à Plombières-lès-Dijon est celle de 1866 avec **195 m³/s**. Pour cette crue, le rapport des Ponts et Chaussées du département de la Côte-d'Or indique qu'elle est survenue après une chute d'eau de 95 mm en 36 heures sur le bassin de l'Ouche, le maximum de pluie atteignant 120 mm sur certains points du bassin.

De nombreux débordements ont été recensés pendant la crue d'octobre 1965. A l'amont de Dijon, des **échanges ont eu lieu entre l'Ouche et le canal**. Dans la traversée de Dijon, les inondations au droit de l'usine de Chèvre Morte et de l'hôpital psychiatrique en amont de la rue Hoche ont été en partie

Note de présentation - PPRI Ouche amont

Mars 2014
provoquées par l'obstruction des vannes du lac Kir par un ouvrage provisoire. À l'aval, les villages ont été submergés. Suite à cette crue, de nombreux travaux de curage, rectification du lit, aménagements et endiguements de l'Ouche ont été réalisés en aval de Plombières les Dijon.

La crue de décembre 1982 quant à elle, avait été précédée de conditions pluviométriques assez exceptionnelles avec 104 mm de précipitations enregistrées en novembre 1982 et 71 mm en octobre. Le total des précipitations de décembre s'élevait quant à lui à 125 mm, soit 2 fois la normale du mois.

La succession de précipitations intenses sur de courtes périodes et/ou leur survenue sur des sols déjà humides engendrerait les plus fortes crues de l'Ouche.

3.4.2 Crues du Rieux et du Chamban

3.5 CRUES DE REFERENCE

Une analyse statistique des débits maxima annuels permet de définir la période de retour des crues historiques mesurées sur les cours d'eau jaugés, et de définir les débits de période de retour centennale.

La période de retour d'une crue exprime en années la probabilité de voir se produire un tel événement chaque année. Par exemple, une crue de période de retour 2 ans a un risque sur deux d'être atteinte ou dépassée chaque année.

Une crue centennale est une crue qui a un risque sur 100 d'être atteinte ou dépassée chaque année. Cependant, une crue centennale ne se produit pas tous les 100 ans.
<table>
<thead>
<tr>
<th>Cours d'eau</th>
<th>Station</th>
<th>Surface BV (km²)</th>
<th>Q10 (m/s)</th>
<th>Q100 (m/s)</th>
<th>1866</th>
<th>1965</th>
<th>2001</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Débit (m³/s)</td>
<td>T (ans)</td>
<td>Débit (m³/s)</td>
</tr>
<tr>
<td>Ouche</td>
<td>Lusigny</td>
<td>43</td>
<td>11</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ouche</td>
<td>La Bussière</td>
<td>290</td>
<td>65</td>
<td>144</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ouche</td>
<td>Marie/ Pont de Pany</td>
<td>422</td>
<td>78</td>
<td>162</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ouche</td>
<td>Plombières</td>
<td>655</td>
<td>112</td>
<td>200</td>
<td>195</td>
<td>85</td>
<td>177</td>
</tr>
</tbody>
</table>

*T : période de retour, en années

Tableau 4 - Débits et périodes de retour des crues historiques, estimation des débits décennal et centennal au droit des stations de mesure

Le détail de l'analyse statistique des débits de crue est présenté en annexe 2.
4 DEFINITION DE L’ALEA INONDATION

4.1 CONSTRUCTION ET CALAGE DU MODELE HYDRAULIQUE

Un modèle hydraulique est un outil informatique de calcul qui permet :
- de reconstituer des crues historiques connues,
- de simuler des crues plus fortes encore.

Le modèle hydraulique permet de définir les secteurs inondés pour un événement hydrologique donné, et de quantifier les vitesses d’écoulement et les hauteurs de submersion en tout point de ces secteurs.

Pour ce faire, il s’appuie sur une schématisation du lit mineur, du relief de la vallée et des ouvrages (ponts, vannes...).

Les calculs des conditions d’écoulement sont effectués pour différentes hypothèses de débits des cours d’eau.

Un modèle numérique de simulation des écoulements de la vallée de l’Ouche amont est mis en œuvre afin de définir l’aïea inondation par débordements, à partir de levés topographiques détaillés :

La vallée de l’Ouche de sa source jusqu’à la confluence avec la Saône a été divisée en 4 grandes entités aboutissant à la construction de 4 sous-modèles distincts :
- Modèle OAM : l’Ouche en amont du lac Kir et la Vandenesse,
- Modèle SUZ : le Suzon en amont de Dijon,
- Modèle DIJ : l’Ouche et le Suzon dans la traversée de Dijon (du lac Kir à la confluence Ouche/Suzon),
- Modèle OAV : l’Ouche, la Tille et leurs affluents en aval de Dijon jusqu’à la confluence avec la Saône.

Le modèle OAM a servi spécifiquement à la réalisation des études de PPRI des 6 communes de l’Ouche amont. Il a été construit à partir de levés topographiques détaillés :
- Profils en travers du lit mineur de l’Ouche (tous les 50m environ), affluents et biefs secondaires,
- Plans cotés de l’ensemble des ouvrages hydrauliques (ponts, vannes, seuils...),
- Levé photogrammétrie et laser aéroporté (LIDAR) du lit majeur couvrant l’ensemble du bassin versant.

Le détail de la modélisation hydraulique mise en œuvre est présenté en annexe 3.

Le modèle est calé sur la crue de mars 2001, par comparaison avec les repères de crue et les informations qualitatives sur le déroulé de l’inondation recueillis sur le terrain dans le cadre d’enquêtes spécifiques effectuées auprès des riverains et des communes.
La crue de 1965, plus forte que celle de 2001, n’a pas été retenue pour le calage du modèle compte tenu des nombreuses modifications des conditions d’écoulement survenues depuis (curages, endiguements, ...).

4.2 **Définition de la crue de référence**

La circulaire du 24 janvier 1994 précise que l’événement de référence à retenir pour l’aléa est « la plus forte crue connue et, dans le cas où celle-ci serait plus faible qu’une crue de référence centennale, cette dernière ».

Compte tenu des conclusions de l’étude hydrologique, la **crue de référence centennale est retenue pour la définition de l’aléa**. Le modèle hydraulique est repris pour simuler la crue centennale.

4.3 **Caractérisation des niveaux d’aléa**

Les niveaux d’aléa sont déterminés en fonction de l’intensité des paramètres physiques de l’inondation de référence, qui se traduisent en termes de dommages aux biens et de gravité pour les personnes :

- **hauteurs de submersion**, calculées par croisement entre les résultats du modèle hydraulique et la topographie levée,

- **vitesses d’écoulement** calculées par le modèle.

Trois classes d’aléa sont ainsi définies, et reportées sur la carte d’aléas :

- **Aléa fort** : hauteur d’eau supérieure à 1m ou vitesse d’écoulement supérieure à 1m/s.

- **Aléa moyen** : hauteur d’eau comprise entre 0,5m et 1m si la vitesse est inférieure à 1m/s, ou vitesse d’écoulement comprise entre 0,5m/s et 1m/s si la hauteur d’eau est inférieure à 1m.

- **Aléa faible** : hauteur d’eau inférieure à 0,5m, et vitesse inférieure à 0,5m/s.

Note de présentation - PPRI Ouche amont

Mars 2014
4.4 SYNTHÈSE DES ALEAS SUR LE TERRITOIRE DE LA COMMUNE

Sur toute la traversée de la commune, l'inondation est délimitée par les coteaux en rive gauche et le canal de Bourgogne en rive droite.

En amont du village, la vallée relativement étroite (50 à 150 mètres) est fortement inondée, avec un aléa fort prédominant. Quelques bâtiments situés sur la frange extérieure de la zone inondable sont soumis à un aléa faible à moyen. La route d'accès au pont est submergée par un aléa moyen sur la rive gauche.

En aval du pont de Gissey, le lit majeur est quasiment inexistant, les écoulements sont concentrés dans le lit mineur.

Plus en aval ; la vallée s'élargit pour atteindre 300m, puis se resserre (70 mètres) avant de s'élargir à nouveau. Les élargissements de la vallée permettent une large expansion des crues, et un abaissement sensible des hauteurs d'inondation.

Les berges du canal de Bourgogne sont submergées sur une majeure partie de leur linéaire, notamment en amont du village.
5 RECAPITULATION DES ENJEUX

Le recensement des enjeux consiste à faire un inventaire des biens et des activités qui sont situés dans
l’emprise de la zone inondable d’occurrence centennale.

L’objectif est d’identifier et de qualifier les différents enjeux potentiellement soumis au risque d’inondation.
Le croisement de la carte des enjeux avec celle de l’aléa permettra de définir le zonage réglementaire et le
règlement qui l’accompagne.

Le guide méthodologique PPRI définit l’évaluation des enjeux comme une « étape indispensable de la
démarche qui permet d’assurer la cohérence entre les objectifs de prévention des risques et les
dispositions qui seront retenues. Elle sert donc d’interface avec la carte des aléas pour délimiter le plan de
zonage réglementaire, préciser le contenu du règlement, et formuler un certain nombre de
recommandations sur les mesures de prévention, de protection et de sauvegarde ».

5.1 LA CLASSIFICATION DES ENJEUX

Le choix des enjeux à recenser et la méthodologie appliquée sont issus :
- des recommandations du Guide méthodologique de réalisation des Plans de Prévention des
 Risques ;
- de la nomenclature réalisée par la Commission de Validation des Données pour l’Information
 Spatialisée (COVADIS). Ce travail vise à standardiser les données géographiques des Plans de
 Prévention des Risques Naturels et Technologiques.

La nomenclature « PPR » a été élaborée comme suit :
- les catégories principales sont issues du paragraphe 3.3 du guide PPRT,
- les sous-catégories des ERP sont celles définies par les articles R123-18 et R123-19 du code
 de la construction et de l’habitation.

Les enjeux répertoriés sont les suivants :

I. Zones urbanisées

Zones résidentielles :
- Habitat dense
- Habitat peu dense
- Habitat diffus
- Projet d’urbanisation future
- Parcs et jardins

Zones d’activités économiques :
- Zones d’activités commerciales
- Zones industrielles
- Zones d’activités futures
- Zones d’activités artisanales et sièges d’entreprise
- Exploitation agricole

Note de présentation - PPRI Ouche amont Mars 2014
Zone d'activité artisanale
Ancienne sablière

Zones d'infrastructures particulières :
Réseau routier
Réseau ferré
Canalisation de matière dangereuse

II. Zones naturelles et agricoles

Zones naturelles :
Forêt
Zones naturelles non boisées
Zones humides
Réseau hydrographique/surfaces en eau

Zones agricoles :
Prairies agricoles/Pâturages
Grande culture
Peupleraies
Jardins familiaux

III. Etablissements recevant du public

Structures d’accueil pour personnes âgées
Salle des fêtes
Restaurants et débits de boissons
Etablissements d’enseignement
Bibliothèques
Etablissements de soins
Etablissements de culte
Administrations
Etablissements sportifs couverts

IV. Espace ouvert recevant du public

Espaces de loisirs / Terrain de sport
Terrain de jeux pour enfants
Aire d’accueil des gens du voyage
Cimetière

V. Ouvrage ou équipement d’intérêt général

Caserne de pompiers
Zone militaire
Déchetterie
Château d’eau
Ancienne décharge
Stations de pompage, de traitement, de captage ou poste de relevement
Station d’épuration
Postes électriques ou téléphoniques
VI. Enjeu patrimonial

Château
Lavoir
Site / Zone archéologique

5.2 Méthodologie de recensement des enjeux

Le recensement des enjeux repose dans un premier temps sur l’analyse de l’occupation des sols qui vise à délimiter les espaces urbanisés et les zones d’expansion des crues. Les zones d’expansion des crues correspondent aux espaces naturels et agricoles qui sont « non urbanisés ou peu urbanisés et peu aménagés ».

Dans un second temps, l’inventaire des enjeux a consisté en l’identification d’enjeux spécifiques qui touchent à la sécurité et aux fonctions vitales des territoires, tels que les établissements recevant du public, les activités économiques, ...

L’identification des enjeux a été faite sur la base d’une analyse documentaire et de la consultation des acteurs locaux.

5.2.1 L’occupation du sol.

L’analyse de l’occupation du sol repose sur la définition :

- des zones urbanisées : zones d’habitat (dense, peu dense, diffus, habitat futur), zones d’activités économiques (commerciales, industrielles, zones d’activités futures);
- des zones naturelles (forêt, zone naturelle non boisée, zones humides,...) et agricoles (prairies, grandes cultures, jardins familiaux,...).

L’identification, la localisation et la qualification des espaces urbanisés et des zones peu ou pas urbanisées ont été réalisées par l’interprétation de Corine Land Cover, du SCAN 25 et des photographies aériennes.

Les projets d’urbanisation future ont été recueillis auprès des élus locaux lors des visites de terrain.

5.2.2 Les enjeux spécifiques

L’identification des enjeux spécifiques repose sur l’inventaire et la caractérisation des éléments suivants :

- Établissements recevant du public : structures d’accueil pour personnes âgées, salles des fêtes, restaurants, bibliothèques, écoles, administrations,...
- Espaces ouverts recevant du public : terrain de sport, terrain de jeux pour enfants, cimetière.
- Ouvrages ou équipements d’intérêt général : SDIS, postes électriques ou téléphoniques, STEP, poste de relevement AEP, station de pompage, de captage AEP, déchetterie,...
- Enjeux patrimoniaux : château, lavoir, ...

Les enjeux spécifiques ont été recensés sur la base d’une analyse documentaire (sites Internet des communes, base de données Mérimée, Pages Jaunes, Google Earth,...).
Cette analyse documentaire a été complétée par une visite de terrain et la consultation des maires de chaque commune (voir paragraphe suivant pour la présentation du déroulement de la consultation des acteurs locaux).

5.2.3 La consultation des acteurs locaux

La consultation des acteurs locaux est une étape essentielle pour l'inventaire des enjeux. Elle permet de :
- Valider et compléter les enjeux inventoriés à partir de l'analyse documentaire,
- Prendre en compte une dimension prospective du territoire en inventoriant les projets d'urbanisation future,
- Prendre des photographies.

Les élus (maire et/ou leurs représentants) de chaque commune ont été rencontrés en avril 2013 pour valider le recensement des enjeux effectué.

5.2.4 Le rendu cartographique

Les enjeux inventoriés ont été digitalisés sous SIG puis cartographiés sur fond cadastral au 1/5 000ème.

5.3 SYNTHÈSE DU RECENSEMENT DES ENJEUX DE LA ZONE D'ÉTUDE

Sur l'ensemble des 6 communes étudiées objet d'un PPRI, la surface inondable représente moins de 5% de la superficie totale. Sur les 475ha situés en zone inondable, 208ha sont en zone d'aléa fort et 185ha sont en zone d'aléa moyen.

La surface inondable représente entre 2 et 11% des territoires communaux selon les communes concernées (Tableau 5).

<table>
<thead>
<tr>
<th>Commune</th>
<th>% du territoire en zone inondable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lusigny-sur-Ouche</td>
<td>2.26</td>
</tr>
<tr>
<td>Bligny-sur-Ouche</td>
<td>2.03</td>
</tr>
<tr>
<td>Gissey-sur-Ouche</td>
<td>4.94</td>
</tr>
<tr>
<td>Sainte-Marie-sur-Ouche</td>
<td>10.52</td>
</tr>
<tr>
<td>Fleurey-sur-Ouche</td>
<td>5.05</td>
</tr>
<tr>
<td>Velars-sur-Ouche</td>
<td>7.19</td>
</tr>
</tbody>
</table>

Tableau 5 - Territoire en zone inondable par commune

Note de présentation - PPRI Ouche amont Mars 2014
Tableau 6 - Répartition des zones inondables par type d'aléa

Sur l'ensemble des communes, l'occupation des sols en zone inondable est dominée par les surfaces agricoles (71%) et naturelles (7%).

Les zones d’habitat représentent 5 % du territoire potentiellement inondable (24 ha) et les zones d’activités artisanales et industrielles ne couvrent que 6 ha soit un peu plus de 1% du secteur inondable.

<table>
<thead>
<tr>
<th></th>
<th>% de zones d'habitat en ZI</th>
<th>% de zones agricoles en ZI</th>
<th>% de zones d'activités industrielle et artisanale en ZI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lusigny-sur-Ouche</td>
<td>10,6</td>
<td>57,3</td>
<td>0,6</td>
</tr>
<tr>
<td>Bligny-sur-Ouche</td>
<td>11,7</td>
<td>61,2</td>
<td>4,3</td>
</tr>
<tr>
<td>Gissey-sur-Ouche</td>
<td>1,8</td>
<td>77,2</td>
<td>0,0</td>
</tr>
<tr>
<td>Sainte-Marie-sur-Ouche</td>
<td>4,8</td>
<td>60,5</td>
<td>0,9</td>
</tr>
<tr>
<td>Fleurey-sur-Ouche</td>
<td>2,4</td>
<td>81,7</td>
<td>0,2</td>
</tr>
<tr>
<td>Velars-sur-Ouche</td>
<td>7,0</td>
<td>68,8</td>
<td>3,0</td>
</tr>
</tbody>
</table>

Tableau 7 - Occupation du sol en zone inondable
5.4 SYNTHÈSE DES ENJEUX SUR LE TERRITOIRE DE LA COMMUNE

A Gissey-sur-Ouche, 4.94% du territoire de la commune se trouve en zone inondable dont 41% en zone d'aléa fort et 45% en zone d'aléa moyen. 77,2 % des terres agricoles se trouvent en zone inondable contre seulement 1,8 % des zones d'habitat.
6 ZONAGE REGLEMENTAIRE

Le plan de zonage réglementaire traduit cartographiquement sur l’ensemble du territoire soumis à l’aléa inondation les mesures d’interdiction, d’autorisation et les prescriptions d’aménagement ainsi que les mesures de prévention, de protection et de sauvegarde mises en œuvre ; il est fondé sur le croisement entre la carte d’aléas, qui indique la nature et l’intensité des risques naturels, et la carte des enjeux. Ce croisement permet d’évaluer le risque.

Deux classes de zonage sont ainsi retenues :

- **Les zones rouges** :
 1. Secteurs situés en aléa fort, quelle que soit l’occupation du sol,
 Ces secteurs correspondent aux zones exposées aux risques mentionnées à l’article L 562-1 du code de l’environnement repris dans le paragraphe 2.1 de la présente note de présentation.
 2. Champs d’expansion des crues et axes d’écoulement à préserver afin de ne pas aggraver l’aléa en amont ou en aval, quel que soit l’aléa défini (faible, moyen ou fort).
 Ces secteurs de champ d’expansion de crue correspondent, en fonction de la nature de l’aléa, aux zones exposées au risque là où l’aléa est qualifié de « fort », et aux zones qui ne sont pas directement exposées aux risques là où l’aléa a été qualifié de « moyen ou faible ».

- **Les zones bleues** : elles correspondent aux secteurs où de forts enjeux sont relevés, avec un aléa faible à moyen :
 1. Centres urbains,
 2. Parkings, voiries,

Ces secteurs correspondent aux zones qui ne sont pas directement exposées au risque mentionnées à l’article L 562-1 du code de l’environnement repris dans le paragraphe 2.1 de la présente note de présentation.
ANNEXES
1 ANNEXE 1 : REPERES DE CRUES

Des enquêtes de terrain ont permis de recenser les repères de crue visibles sur l’ensemble du territoire de l’Ouche amont.

Chaque repère de crue identifié a fait l’objet d’une fiche, avec plan de situation, photographie, coordonnées de la personne qui nous a renseignés. Ces repères de crue sont ensuite rattachés au NGF.
FICHE DE REPÈRE DE CRUE - RCA1

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>RCA1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de données:</td>
<td>PPRI Ouche - Hydratec 2011</td>
</tr>
<tr>
<td></td>
<td>Mme Balizet</td>
</tr>
<tr>
<td>Cours d'eau:</td>
<td>Le Rieux</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Lusigny-sur-Ouche</td>
</tr>
<tr>
<td>Adresse:</td>
<td>Maison aux volets bleus</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 777295</td>
</tr>
<tr>
<td></td>
<td>Y= 2235095</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>Juillet 2009</td>
</tr>
<tr>
<td>Référence:</td>
<td>Haut de la deuxième marche de l'escalier</td>
</tr>
<tr>
<td></td>
<td>d'accès à la porte d'entrée.</td>
</tr>
<tr>
<td>Hauteur :</td>
<td>370.87</td>
</tr>
<tr>
<td>Présision:</td>
<td>Témoignage direct, précision altimétrique</td>
</tr>
<tr>
<td></td>
<td>peu fiable (en comparaison du niveau</td>
</tr>
<tr>
<td></td>
<td>indiqué sur la porte à coté -30 cm).</td>
</tr>
<tr>
<td>Commentaire:</td>
<td></td>
</tr>
</tbody>
</table>

Plan de situation

![Plan de situation](image1)

Photo

![Photo](image2)
FICHE DE REPÈRE DE CRUE - OA1

<table>
<thead>
<tr>
<th>Identifiant</th>
<th>OA1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de donnée</td>
<td>PPR Ouche - Hydratec 2011</td>
</tr>
<tr>
<td></td>
<td>M. Griveaux</td>
</tr>
<tr>
<td>Adresse</td>
<td>6 place du 8 mai 1945</td>
</tr>
<tr>
<td>Date de l'événement</td>
<td>1965</td>
</tr>
<tr>
<td>Référence</td>
<td>Niveau du trottoir.</td>
</tr>
<tr>
<td>Commentaire</td>
<td></td>
</tr>
<tr>
<td>Cours d'eau</td>
<td>Ouche</td>
</tr>
<tr>
<td>Commune / Lieu-dit</td>
<td>Bligny-sur-Ouche</td>
</tr>
<tr>
<td>Coordonnées</td>
<td>X= 776901</td>
</tr>
<tr>
<td></td>
<td>Y= 2236738</td>
</tr>
<tr>
<td>Hauteur</td>
<td></td>
</tr>
<tr>
<td>Cote</td>
<td>353.14</td>
</tr>
<tr>
<td>Précision</td>
<td>Témoignage direct.</td>
</tr>
</tbody>
</table>

Plan de situation

![Plan de situation](image1)

Photo

![Photo](image2)
ETUDE HYDRAULIQUE GLOBALE DE LA ZONE INONDABLE DE L'OUCHE, DE LA TILLE AVAL ET DE SES AFFLUENTS - PPRI

FICHE DE REPÈRE DE CRUE - RCA3

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>RCA3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de donnée:</td>
<td>PPRI Ouche - Hydratec 2011 M. Akchotte</td>
</tr>
<tr>
<td>Cours d'eau:</td>
<td>Ouche</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Oucherotte</td>
</tr>
<tr>
<td>Adresse:</td>
<td>1 rue du Pont Neuf</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 777137 Y= 2238556</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>Novembre 2010</td>
</tr>
<tr>
<td>Hauteur :</td>
<td>0.45 m</td>
</tr>
<tr>
<td>Cote:</td>
<td>344.20</td>
</tr>
<tr>
<td>Référence:</td>
<td>Sol au pied du grillage de la propriété de l'autre coté de la rue.</td>
</tr>
<tr>
<td>Précision:</td>
<td>Témoignage direct.</td>
</tr>
</tbody>
</table>

Commentaire:

Plan de situation

Photo
ETUDE HYDRAULIQUE GLOBALE DE LA ZONE INONDABLE DE L’OUCHE, DE LA TILLE AVAL ET DE SES AFFLUENTS - PPRI

FICHE DE REPÈRE DE CRUE - RCA2

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>RCA2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de donnée:</td>
<td>PPRI Ouche - Hydratec 2011 Mme Brivot</td>
</tr>
<tr>
<td>Cours d'eau:</td>
<td>Ouche</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Oucherotte</td>
</tr>
<tr>
<td>Adresse:</td>
<td>111 route de Dijon</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 777136 Y= 2238416</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>Novembre 2010</td>
</tr>
<tr>
<td>Référence:</td>
<td>Sol au pied du portail.</td>
</tr>
<tr>
<td>Hauteur:</td>
<td>345.05</td>
</tr>
<tr>
<td>Précision:</td>
<td>Témoignage direct.</td>
</tr>
</tbody>
</table>

Commentaire:

Plan de situation | Photo

![Plan de situation](image1.png) ![Photo](image2.png)
FICHE DE REPÈRE DE CRUE - RCA5

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>RCA5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de donnée:</td>
<td>PPRI Ouche - Hydratec 2011 M. Millot</td>
</tr>
<tr>
<td>Cours d'eau:</td>
<td>Ouche</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Sainte-Marie-sur-Ouche</td>
</tr>
<tr>
<td>Adresse:</td>
<td>970 Grande Rue</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 786496 Y= 2257661</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>Novembre 2010</td>
</tr>
<tr>
<td>Hauteur :</td>
<td>Cote: 282.37</td>
</tr>
<tr>
<td>Référence:</td>
<td>Sol du jardin au droit du bâton planté dans le sol.</td>
</tr>
<tr>
<td>Précision:</td>
<td>Témoinage direct.</td>
</tr>
</tbody>
</table>

Commentaire:

<table>
<thead>
<tr>
<th>Plan de situation</th>
<th>Photo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fiche de Répère de Crue - MA6

Identifiant: MA6

Source de donnée: PPRI Ouche - Hydratec 2011
Employé de la SOBEM

Cours d'eau: Ouche
Commune / Lieu-dit: Sainte-Marie-sur-Ouche

Adresse: 158 Grande Rue
Coordonnées:
- X = 786219
- Y = 2256847

Date de l'événement: Mars 2001
Hauteur: 0.45 m
Cote: 284.62

Référence: Marque sur le mur du local au fond de l'usine (coté Ouche) - repère par rapport au sol.
Précision: Témoignage direct

Commentaire:

Plan de situation

Photo
FICHE DE REPÈRE DE CRUE - OA4

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>OA4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de donnée:</td>
<td>PPRI Ouche - Hydratec 2011</td>
</tr>
<tr>
<td>Cours d'eau:</td>
<td>Ouche</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Sainte-Marie-sur-Ouche</td>
</tr>
<tr>
<td>Adresse:</td>
<td>158 Grande Rue</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 786233</td>
</tr>
<tr>
<td></td>
<td>Y= 2256850</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>1965</td>
</tr>
<tr>
<td>Hauteur:</td>
<td>0.6</td>
</tr>
<tr>
<td>Cote:</td>
<td>284.84 m</td>
</tr>
<tr>
<td>Référence:</td>
<td>Marque sur le mur du local au fond de l'usine (coté Ouche) - repère par rapport au sol.</td>
</tr>
<tr>
<td>Précision:</td>
<td>Marque sur un mur.</td>
</tr>
</tbody>
</table>

Commentaire:

Plan de situation

Photo
<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>OA8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de donnée:</td>
<td>PPRI Ouche - Hydratec 2011</td>
</tr>
<tr>
<td></td>
<td>M. Lignier</td>
</tr>
<tr>
<td>Adresse:</td>
<td>Pont de la rue du Château</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 790680</td>
</tr>
<tr>
<td></td>
<td>Y= 2260302</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>1965</td>
</tr>
<tr>
<td>Référence:</td>
<td>Repère n°3 en rouge de l'échelle fixée sur la face aval du pont.</td>
</tr>
<tr>
<td>Hauteur:</td>
<td></td>
</tr>
<tr>
<td>Cote:</td>
<td>271.72</td>
</tr>
<tr>
<td>Précision:</td>
<td>Témoignage direct.</td>
</tr>
</tbody>
</table>

Commentaire:

Plan de situation

Photo
FICHE DE REPÈRE DE CRUE - OA9

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>OA9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de donnée:</td>
<td>PPRI Ouche - Hydratec 2011 M. Lignier</td>
</tr>
<tr>
<td>Cours d'eau:</td>
<td>Ouche</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Fleurey-sur-Ouche</td>
</tr>
<tr>
<td>Adresse:</td>
<td>Salle des fêtes, rue du Lavoir</td>
</tr>
</tbody>
</table>
| Coordonnées: | X= 790731
| | Y= 2260296 |
| Date de l'événement: | 1965 |
| Hauteur: | 0.55 m |
| Cote: | 270.56 |
| Référence: | Sol au pied de la fenêtre la plus proche du pont. |
| Précision: | Témoignage direct. |

Commentaire:

Plan de situation

Photo
FICHE DE REPERE DE CRUE - OA5

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>OA5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de donnée:</td>
<td>Cabinet Mornand Ruinet (R1)</td>
</tr>
<tr>
<td>Cours d'eau:</td>
<td>Ouche</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Fleurey-sur-Ouche</td>
</tr>
<tr>
<td>Adresse:</td>
<td>1 rue du Château</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 790631</td>
</tr>
<tr>
<td></td>
<td>Y= 2260392</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>1965</td>
</tr>
<tr>
<td>Hauteur :</td>
<td>0.75 m</td>
</tr>
<tr>
<td>Référence:</td>
<td>Au dessus du seuil du magasin.</td>
</tr>
<tr>
<td>Précision:</td>
<td></td>
</tr>
</tbody>
</table>

Commentaire:

Plan de situation

![Plan de situation](image1)

Photo

![Photo](image2)
FICHE DE REPÈRE DE CRUE - OA6

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>OA6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de données:</td>
<td>Cabinet Mornand Ruinet (R2)</td>
</tr>
<tr>
<td>Cours d'eau:</td>
<td>Ouche</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Fleurey-sur-Ouche</td>
</tr>
<tr>
<td>Adresse:</td>
<td>1 rue du Château</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 790631</td>
</tr>
<tr>
<td></td>
<td>Y= 2260387</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>1965</td>
</tr>
<tr>
<td>Hauteur :</td>
<td>0.65 m</td>
</tr>
<tr>
<td>Référence:</td>
<td>Au dessus du seuil du château.</td>
</tr>
<tr>
<td>Cote:</td>
<td>271.74</td>
</tr>
<tr>
<td>Commentaire:</td>
<td></td>
</tr>
</tbody>
</table>

Plan de situation

Photo
FICHE DE REPÈRE DE CRUE - OA7

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>OA7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de donnée:</td>
<td>Cabinet Mornand Ruinet (R3)</td>
</tr>
<tr>
<td>Cours d'eau:</td>
<td>Ouche</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Fleurey-sur-Ouche</td>
</tr>
<tr>
<td>Adresse:</td>
<td>7 rue de Velars</td>
</tr>
</tbody>
</table>
| Coordonnées: | X= 790661
Y= 2260373 |
| Date de l'événement: | 1965 |
| Hauteur: | 270.96 |
| Référence: | Troisième marche de l'escalier d'accès à la maison. |
| Précision: | |

Commentaire:

Plan de situation

Photo

hydratec
FICHE DE REPÈRE DE CRUE - OA10

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>OA10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de données:</td>
<td>Cabinet Mornand Ruinet (R4)</td>
</tr>
<tr>
<td>Cours d'eau:</td>
<td>Ouche</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Velars-sur-Ouche</td>
</tr>
<tr>
<td>Adresse:</td>
<td>4 rue des Trois Ponts</td>
</tr>
<tr>
<td>Coordonnées:</td>
<td>X= 794356</td>
</tr>
<tr>
<td></td>
<td>Y= 2260897</td>
</tr>
<tr>
<td>Date de l'événement:</td>
<td>1965</td>
</tr>
<tr>
<td>Référence:</td>
<td>Seuil de la maison.</td>
</tr>
<tr>
<td>Hauteur :</td>
<td>Cote: 262.75</td>
</tr>
<tr>
<td>Précision:</td>
<td></td>
</tr>
</tbody>
</table>

Commentaire:

Plan de situation

![Plan de situation](image1)

Photo

![Photo](image2)
FICHE DE REPÈRE DE CRUE - MA2

<table>
<thead>
<tr>
<th>Identifiant:</th>
<th>MA2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de donnée:</td>
<td>PPRI Ouche - Hydratec 2011 M. Jean</td>
</tr>
<tr>
<td>Cours d'eau:</td>
<td>Ouche</td>
</tr>
<tr>
<td>Commune / Lieu-dit:</td>
<td>Velars-sur-Ouche</td>
</tr>
<tr>
<td>Adresse:</td>
<td>Eglise, rue des Trois Ponts</td>
</tr>
</tbody>
</table>
| Coordonnées: | X= 794331
| | Y= 2260883 |
| Date de l'événement: | Mars 2001 |
| Hauteur: | Cote: 262.32 |
| Référence: | Première marche de l'escalier d'accès à l'église. |
| Précision: | Témoignage direct (à partir d'une photo). |

Commentaire:

Plan de situation

![Plan de situation](image1)

Photo

![Photo](image2)
2.1 Méthodologie de détermination des débits de crue

2.1.1 Calcul du débit décennal – Ajustement de Gumbel

Pour les stations qui disposent de suffisamment d’années de mesure, le débit décennal peut être estimé à partir de l’analyse statistique des débits.

L’analyse statistique repose sur l’ajustement à une loi de type Gumbel des débits maximum annuels. L’ajustement de Gumbel est défini selon la loi suivante :

\[
Q(T) = a \times U + b
\]

\[
\begin{align*}
 a &= f(K) \times \sigma_x \\
 b &= \mu_x - g(K) \times a \\
 U &= -\ln\left(-\ln\left(1 - \frac{1}{T}\right)\right)
\end{align*}
\]

Avec :

- T : période de retour,
- Q(T) : débit pour une période de retour T
- \(\sigma_x \) : écart type des débits maximum instantanés
- \(\mu_x \) : moyenne des débits maximum instantanés
- \(f(K) \) et \(g(K) \) : coefficients de correction fonctions du nombre de valeurs K de la série.

Les données de débits maximum annuels aux stations hydrométriques sont extraites de la banque HYDRO du ministère de l’Environnement.

Les résultats des ajustements réalisés pour les stations disposant de suffisamment de données sont présentés dans les paragraphes suivants.

2.1.2 Calcul des débits de pointe supérieurs à décennaux

Au-delà d’une certaine période de retour, et compte tenu que les chroniques de débits mesurés ne constituent généralement pas un échantillon suffisamment long de mesure, il s’avère difficile d’utiliser les lois statistiques sur les débits mesurés pour les crues rares à exceptionnelles. La méthode d’ajustement de Gumbel telle que présentée dans le paragraphe précédent n’est donc plus applicable.

La méthode du gradex progressif et du rapport au débit décennal ont été utilisées pour déterminer les débits de pointe des crues rares. Ces 2 méthodes sont décrites dans les paragraphes suivants.
Méthode du gradex progressif (Michel – 1982)

La méthode du gradex progressif, développée par le CEMAGREF s’inspire de la méthode du gradex. Elle traduit cependant une évolution peut-être plus proche de la réalité physique des phénomènes en supposant qu’il n’y a pas de refus total de l’infiltration dès la fréquence de débit décennal (période de retour pivot) mais plutôt une augmentation progressive du coefficient de ruissellement à partir de ce point.

La formulation permettant de traduire cette augmentation progressive est la suivante ; elle introduit le rapport des gradex de la pluie et du débit :

\[
Q(T) = Q(T_{pivot}) + C_{PD} \times \frac{G_{PD} \times S}{D \times 86.4} \times \ln \left(1 + \frac{G_Q}{C_{PD} \times \frac{G_{PD} \times S}{D \times 86.4}} \times \frac{T - T_{pivot}}{T_{pivot}} \right)
\]

Avec :
- \(Q(T)\) = débit instantané de période de retour \(T\) (m\(^3\)/s)
- \(T_{pivot}\) = temps de retour du point pivot (ans), pris ici à 10 ans sur les deux stations
- \(C_{PD}\) = coefficient de pointe du débit des crues pour une durée \(D\)
- \(G_{PD}\) = gradex des pluies de durée \(D\) (mm)
- \(S\) = surface du bassin versant (km\(^2\))
- \(D\) = durée des crues (jours)
- \(G_Q\) = gradex des débits de pointe (m\(^3\)/s)

2.2 Synthèse

Les débits calculés et les ajustements statistiques aux stations de l’Ouche sont présentés dans les paragraphes suivants.

2.2.1 Débits de crue de l’Ouche à Lusigny-sur-Ouche

Les données à la station de Plombières sont disponibles depuis 1967 jusqu’à aujourd’hui via la banque La station de Lusigny-sur-Ouche présente des données sur une durée de 12 ans seulement (1971 à 1983).

Le débit décennal a été calculé en utilisant la loi de type Surface-Débit :

Note de présentation - PPRI Ouche amont

Mars 2014
\[Q_{10} = 0.55 \times S^{0.8} \]

avec \(S = 43 \text{ km}^2 \) on obtient :

\[Q_{10} = 11.1 \text{ m}^3/\text{s} \]

Pour définir les débits inférieurs et supérieurs au débit décennal, on utilise le rapport des débits de crue calculé à la station de la Bussière-sur-Ouche située en aval. Cette station présente les avantages de comporter une série de débits plus longue et des crues importantes (mars 2001, novembre 1996...) ce qui se traduit par un ajustement statistique plus fiable.

L’application numérique donne les débits suivants :

<table>
<thead>
<tr>
<th>Ouche à Lusigny-sur-Ouche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2</td>
</tr>
<tr>
<td>Q5</td>
</tr>
<tr>
<td>Q10</td>
</tr>
<tr>
<td>Q20</td>
</tr>
<tr>
<td>Q30</td>
</tr>
<tr>
<td>Q50</td>
</tr>
<tr>
<td>Q100</td>
</tr>
<tr>
<td>Q200</td>
</tr>
<tr>
<td>Q500</td>
</tr>
<tr>
<td>Q1000</td>
</tr>
</tbody>
</table>

Débits de crue de l’Ouche à Lusigny-sur-Ouche.
2.2.2 Débits de crue de l’Ouche à la Bussière-sur-Ouche

La station de la Bussière-sur-Ouche présente des données sur une durée de 25 ans (1986 à 2010).

L’ajustement de Gumbel puis le gradex progressif ont été appliqués. Les ajustements et les intervalles de confiances associés sont présentés page suivante.

<table>
<thead>
<tr>
<th>Ouche à La Bussière-sur-Ouche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2</td>
</tr>
<tr>
<td>Q5</td>
</tr>
<tr>
<td>Q10</td>
</tr>
<tr>
<td>Q20</td>
</tr>
<tr>
<td>Q30</td>
</tr>
<tr>
<td>Q50</td>
</tr>
<tr>
<td>Q100</td>
</tr>
<tr>
<td>Q200</td>
</tr>
<tr>
<td>Q500</td>
</tr>
<tr>
<td>Q1000</td>
</tr>
</tbody>
</table>

Débits de crue de l’Ouche à la Bussière-sur-Ouche.
STATION : L'Ouche à la Bussière-sur-Ouche
Nombre d’années : 25
A partir de : 1986

Résultats de l’ajustement statistique

<table>
<thead>
<tr>
<th>PERIODE DE RETOUR</th>
<th>DEBITS GUMBEL (m³/a)</th>
<th>IC à 70% (m³/a)</th>
<th>IC à 95% (m³/a)</th>
<th>DEBITS GRADEX (m³/a)</th>
<th>DEBITS GRADEX progressif (m³/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>39</td>
<td>(32 - 39)</td>
<td>(30 - 45)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>53</td>
<td>(49 - 69)</td>
<td>(45 - 69)</td>
<td>65.0</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>65</td>
<td>(58 - 74)</td>
<td>(52 - 87)</td>
<td>79.4</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>76</td>
<td></td>
<td></td>
<td>110.6</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>91</td>
<td></td>
<td></td>
<td>143.7</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>102</td>
<td>(90 - 119)</td>
<td>(78 - 139)</td>
<td></td>
<td>289</td>
</tr>
<tr>
<td>1000</td>
<td>130</td>
<td>(121 - 167)</td>
<td>(113 - 196)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Années particulières

<table>
<thead>
<tr>
<th>DATE</th>
<th>DEBITS (m³/a)</th>
<th>PERIODE DE RETOUR (selon Gumbel)</th>
<th>PERIODE DE RETOUR (selon gradex de solides)</th>
<th>PERIODE DE RETOUR (selon gradex progressif)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/03/2001</td>
<td>54</td>
<td>10 31 189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14/10/1993</td>
<td>77</td>
<td>8 20 104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30/11/1990</td>
<td>64</td>
<td>5 9 35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03/05/1988</td>
<td>60</td>
<td>4 8 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27/04/1988</td>
<td>53</td>
<td>3 5 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22/04/1986</td>
<td>52</td>
<td>3 5 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28/12/1999</td>
<td>46</td>
<td>2 3 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09/03/2000</td>
<td>41</td>
<td>2 3 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25/01/1995</td>
<td>36</td>
<td>2 2 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21/02/1999</td>
<td>37</td>
<td>2 2 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Résultat graphique

AJUSTEMENTS LOI DE GUMBEL SERIE 1986 - 2010 STATION LA BUSSIÈRE-SUR-OUCHE
2.2.3 Débits de crue de l'Ouche à Sainte-Marie-sur-Ouche/ Pont de Pany

La station de Sainte-Marie-sur-Ouche/ Pont de Pany présente des données sur une durée de 24 ans (1986 à 2010).

L'ajustement de Gumbel puis le gradex progressif ont donc été appliqués. Les ajustements et les intervalles de confiance associés sont présentés page suivante.

<table>
<thead>
<tr>
<th>Ouche à Sainte-Marie-sur-Ouche/ Pont de Pany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2</td>
</tr>
<tr>
<td>Q5</td>
</tr>
<tr>
<td>Q10</td>
</tr>
<tr>
<td>Q20</td>
</tr>
<tr>
<td>Q30</td>
</tr>
<tr>
<td>Q50</td>
</tr>
<tr>
<td>Q100</td>
</tr>
<tr>
<td>Q200</td>
</tr>
<tr>
<td>Q500</td>
</tr>
<tr>
<td>Q1000</td>
</tr>
</tbody>
</table>

Débits de crue de l'Ouche à Sainte-Marie-sur-Ouche/ Pont de Pany.
STATION : L'Ouche à Sainte-Marie-sur-Ouche (Pont de Pany)
Nombre d'années : 24
A partir de : 1996

Résultats de l'ajustement statistique

<table>
<thead>
<tr>
<th>PERIODE DE RETOUR</th>
<th>DEBITS GUMIEL (m³/s)</th>
<th>IC à 70% (m³/s)</th>
<th>IC à 95% (m³/s)</th>
<th>DEBITS GRADEX progressif (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>43</td>
<td>(39 - 47)</td>
<td>(36 - 55)</td>
<td>1,5 jours</td>
</tr>
<tr>
<td>5</td>
<td>64</td>
<td>(59 - 71)</td>
<td>(54 - 84)</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>78</td>
<td>(70 - 86)</td>
<td>(63 - 104)</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>91</td>
<td>(107 - 141)</td>
<td>(92 - 166)</td>
<td>128</td>
</tr>
<tr>
<td>50</td>
<td>109</td>
<td>(143 - 198)</td>
<td>(134 - 237)</td>
<td>162</td>
</tr>
<tr>
<td>100</td>
<td>122</td>
<td></td>
<td></td>
<td>304</td>
</tr>
</tbody>
</table>

Années particulières

<table>
<thead>
<tr>
<th>DATE</th>
<th>DEBITS (m³/s)</th>
<th>PERIODE DE RETOUR (selon Gumbel)</th>
<th>PERIODE DE RETOUR (selon grade des pluies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/03/2001</td>
<td>107</td>
<td>46 IC 05% 13 IC 95% 327</td>
<td>30</td>
</tr>
<tr>
<td>14/15/1993</td>
<td>54</td>
<td>6 13 IC 21</td>
<td>13</td>
</tr>
<tr>
<td>10/05/1998</td>
<td>70</td>
<td>4 7 IC 21</td>
<td>-</td>
</tr>
<tr>
<td>30/11/1996</td>
<td>69</td>
<td>4 7 IC 21</td>
<td>-</td>
</tr>
<tr>
<td>28/04/1998</td>
<td>66</td>
<td>3 6 IC 16</td>
<td>-</td>
</tr>
<tr>
<td>09/03/2006</td>
<td>58</td>
<td>3 4 IC 9</td>
<td>-</td>
</tr>
<tr>
<td>09/03/1991</td>
<td>51</td>
<td>2 3 IC 5</td>
<td>-</td>
</tr>
<tr>
<td>28/12/1999</td>
<td>49</td>
<td>2 3 IC 5</td>
<td>-</td>
</tr>
<tr>
<td>25/12/1995</td>
<td>49</td>
<td>2 3 IC 5</td>
<td>-</td>
</tr>
<tr>
<td>21/02/1999</td>
<td>46</td>
<td>2 2 IC 5</td>
<td>-</td>
</tr>
</tbody>
</table>

Résultat graphique

Ajustements loi de Gumbel série 1996 - 2010 Station Ste Marie-sur-Ouche

Note de présentation - PPRI Ouche amont Mars 2014
2.2.4 Débits de crue de l'Ouche à Plombières-lès-Dijon

Les données à la station de Plombières sont disponibles depuis 1967 jusqu'à aujourd'hui via la banque Hydro.

L'ajustement de Gumbel puis le gradex progressif ont donc été appliqués. Les ajustements et les intervalles de confiances associés sont présentés page suivante.

<table>
<thead>
<tr>
<th>Ouche à Plombières-lès-Dijon</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2</td>
<td>54 m3/s</td>
</tr>
<tr>
<td>Q5</td>
<td>89 m3/s</td>
</tr>
<tr>
<td>Q10</td>
<td>112 m3/s</td>
</tr>
<tr>
<td>Q20</td>
<td>135 m3/s</td>
</tr>
<tr>
<td>Q30</td>
<td>151 m3/s</td>
</tr>
<tr>
<td>Q50</td>
<td>172 m3/s</td>
</tr>
<tr>
<td>Q100</td>
<td>200 m3/s</td>
</tr>
</tbody>
</table>

Débits de crue de l'Ouche à Plombières-lès-Dijon.
Résultats de l'ajustement statistique

<table>
<thead>
<tr>
<th>Période de retour (ans)</th>
<th>Débits Gumbel (m³/s)</th>
<th>IC à 70% (m³/s)</th>
<th>IC à 95% (m³/s)</th>
<th>Débits GRADEX (m³/s)</th>
<th>Débits GRADEX progressif (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 jours</td>
</tr>
<tr>
<td>2</td>
<td>54 (50 - 60)</td>
<td>(47 - 66)</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>89 (83 - 97)</td>
<td>(76 - 110)</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>112 (102 - 123)</td>
<td>(92 - 143)</td>
<td></td>
<td></td>
<td>112</td>
</tr>
<tr>
<td>20</td>
<td>134</td>
<td></td>
<td></td>
<td></td>
<td>146</td>
</tr>
<tr>
<td>50</td>
<td>163</td>
<td></td>
<td></td>
<td></td>
<td>189</td>
</tr>
<tr>
<td>100</td>
<td>184 (166 - 207)</td>
<td>(147 - 237)</td>
<td></td>
<td></td>
<td>222</td>
</tr>
</tbody>
</table>

Années particulières (T selon ajustement de Gumbel)

<table>
<thead>
<tr>
<th>Date</th>
<th>Débits (m³/s)</th>
<th>Période de retour (selon Gumbel)</th>
<th>IC 95%</th>
<th>T</th>
<th>IC 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/03/2006</td>
<td>79</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>01/01/1988</td>
<td>81</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>23/04/1986</td>
<td>84</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>28/04/1986</td>
<td>94</td>
<td>4</td>
<td>7</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>16/12/1981</td>
<td>99</td>
<td>4</td>
<td>8</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>15/10/1993</td>
<td>103</td>
<td>5</td>
<td>10</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>01/12/1996</td>
<td>111</td>
<td>5</td>
<td>10</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>18/12/1982</td>
<td>134</td>
<td>9</td>
<td>20</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>14/03/2001</td>
<td>151</td>
<td>13</td>
<td>35</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>01/11/1988</td>
<td>152</td>
<td>13</td>
<td>36</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>01/10/1995</td>
<td>177</td>
<td>24</td>
<td>80</td>
<td>442</td>
<td></td>
</tr>
</tbody>
</table>

Crues historiques

- 1866: 195
- 1910: 180
- 1930: 172

Résultat graphique

Graphique montrant les ajustements de Gumbel et GRADEX de la série 1963-2008 pour la station Ouche à Plombières.
2.3 SYNTHÈSE DES DÉBITS DE PROJET

Les résultats des calculs des débits de crues sont récapitulés dans le tableau suivant.

<table>
<thead>
<tr>
<th>Cours d'eau</th>
<th>Station</th>
<th>Surface BV (km²)</th>
<th>Q10 (m³/s)</th>
<th>Q100 (m³/s)</th>
<th>Q100/Q10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ouche</td>
<td>Lusigny</td>
<td>43</td>
<td>11</td>
<td>25</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>La Bussière</td>
<td>290</td>
<td>65</td>
<td>144</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>Sainte Marie/ Pont de Pany</td>
<td>422</td>
<td>78</td>
<td>162</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>Plombières</td>
<td>655</td>
<td>112</td>
<td>200</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Synthèse des débits de crues
3 ANNEXE 3 : MODELISATION HYDRAULIQUE

3.1 PRESENTATION

3.1.1 Généralités

Le modèle numérique de simulation des crues de l'Ouche en amont de Dijon s'appuie sur la connaissance topographique et bathymétrique de l'Ouche et de ses principaux affluents et du champ d'expansion de ses crues, complétée par une analyse détaillée des spécificités du terrain.

3.1.2 Crues modélisées

La crue historique de mars 2001 est modélisée ; elle permet de valider le calage du modèle en termes de hauteurs d'eau calculées et d'empreinte des zones inondables cartographiées.

La crue centennale définie par les analyses hydrologiques est ensuite modélisée afin de définir une cartographie de l'aléa centennal sur l'ensemble des communes.

3.1.3 Aire d'étude, emprise du modèle

Le modèle construit couvre la vallée de l'Ouche de sa source jusqu'à la confluence avec la Saône. Il a été divisé en 4 grandes entités aboutissant à la construction de 4 sous-modèles distincts :

- Modèle OAM : l'Ouche en amont du lac Kir et la Vandenesse,
- Modèle SUZ : le Suzon en amont de Dijon,
- Modèle DIJ : l'Ouche et le Suzon dans la traversée de Dijon (du lac Kir à la confluence Ouche/Suzon),
- Modèle OAV : l'Ouche, la Tille et leurs affluents en aval de Dijon jusqu'à la confluence avec la Saône.

Le modèle OAM a servi spécifiquement à la réalisation des études de PPRI des 6 communes de l'Ouche amont.
3.2 CONSTRUCTION DU MODELE HYDRAULIQUE

3.2.1 Le logiciel de simulation HYDRARIV

HYDRARIV est un logiciel de simulation des systèmes fluviaux, développé par Hydratec, pour répondre aux besoins très divers de modélisation hydraulique dans le domaine fluvial. C'est un outil de simulation complet, basé sur la résolution des équations de Barré de Saint Venant unidimensionnelles et bidimensionnelles. Ce logiciel comporte les particularités suivantes :

- il intègre 4 concepts de schématisation pouvant coexister au sein d'un même modèle : filaire, casier, bi dimensionnel et station de gestion,
- il offre un éventail étendu de fonctionnalités regroupées en 4 grands modules : hydrologie, hydraulique, advection-diffusion, contrôle et régulation,
- la résolution des équations de Barré de Saint Venant repose sur des algorithmes implicites, s'appuyant sur des techniques de sous structuration, ce qui confère à la fois une grande rapidité et une forte robustesse aux calculs,
- HYDRARIV est pilotée par une interface graphique fondée sur les commandes API de Windows : les objets graphiques font appel à des notions intuitives et à des commandes familières aux utilisateurs des logiciels de bureautique et de dessin du monde Windows. Cet environnement confère à HYDRARIV un grand confort d'utilisation.

HYDRARIV dispose de nombreux modules d'import et d'export avec des outils SIG, pour certaines opérations de pré et post-traitement : cette disposition est particulièrement utile pour les modèles bidimensionnels dont le paramétrage repose généralement sur l'exploitation de semis de points et de modèles numériques de terrain.

HYDRARIV est articulé autour des blocs fonctionnels schématisés sur la figure ci-dessous.

Le logiciel HYDRARIV proprement dit comprend une interface de pilotage graphique et un moteur de calcul composé de la chaîne de simulation Hydra.

Note de présentation - PPRI Ouche amont

Mars 2014
L'interface remplit les fonctions principales suivantes :

- importation de données externes générées par d'autres applicatifs tels que les SIG,
- génération, éditions des entités de modélisation,
- paramétrage des scénarios,
- pilotage et contrôle des calculs de simulation. Ces derniers sont réalisés en sous tâche par la chaîne de simulation Hydra et sont totalement transparents pour l'utilisation,
- exploitation des résultats hydrauliques à partir des fichiers de résultats bruts produits par Hydra : courbes x(t), profils en long, cartes bi dimensionnelles d’écoulement,
- conditionnement et exportation de fichiers résultats au format MIF/MID en vue d'un post-traitement cartographique par un SIG, couplé à un modèle numérique de terrain M.N.T.

Les résultats de modélisation sont exportés vers le logiciel de post-traitement Hydramap, qui permet la réalisation de cartes d'aléa par croisement avec le MNT issu des levés topographiques disponibles en lit majeur.

3.2.2 Données topographiques et bathymétriques

Les données topographiques utilisées sont de plusieurs types, et ont toutes été levées dans le cadre de l’élaboration du Plan de Prévention des Risques d’inondation :

- levés bathymétriques du lit mineur : profils en travers du lit mineur de l’Ouche et de ses principaux affluents tous les 50 mètres environ,
- ouvrages hydrauliques : l’ensemble des ponts, des seuils et des vannages.

3.2.3 Schématisation

3.2.3.1 Généralités

Compte tenu des objectifs de la modélisation, à savoir l’élaboration d’un diagnostic global du secteur d’étude et la production de cartes d’inondation précises fondées sur une topographie fine du terrain naturel, et des caractéristiques locales de la vallée inondable, un schéma mixte de modélisation a été choisi, comprenant une schématisation filaire à casiers et bi-dimensionnelle.

La connexion des différents domaines est assurée par les liaisons latérales, de natures différentes selon la topographie ou le type d’ouvrage.

Note de présentation - PPRI Ouche amont Mars 2014

42
La figure ci-dessous illustre les différents domaines coexistant dans les cinq sous-modèles de la zone d’étude.

<table>
<thead>
<tr>
<th>Entités de modélisation</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>branche de calcul (domaine filaire)</td>
<td>Fluvial + Assainissement</td>
</tr>
<tr>
<td>domaine bidimensionnel</td>
<td>Fluvial</td>
</tr>
<tr>
<td>domaine casiers</td>
<td>Fluvial</td>
</tr>
<tr>
<td>station de gestion</td>
<td>Assainissement</td>
</tr>
<tr>
<td>liaison latérale</td>
<td>Fluvial + Assainissement</td>
</tr>
<tr>
<td>maillage / dérivation</td>
<td>Fluvial + Assainissement</td>
</tr>
</tbody>
</table>

Entités de modélisation présentes dans le modèle hydraulique

3.2.3.2 Schématisation filaire

Le domaine filaire modélise l’écoulement le long d’un bief de rivière ou de vallée inondable, caractérisé par une direction privilégiée d’écoulement le long de son axe longitudinal.

Le modèle filaire rend compte du fonctionnement du lit majeur d’un cours d’eau, de ses affluents et des principaux axes d’écoulement.

Le bief de vallée est composé d’une succession de tronçons de rivière entrecoupés de singularités hydrauliques formant obstacle à l’écoulement.

Le modèle filaire se construit à partir des profils en travers. L’hydraulicien synthétise avec 14 points, les profils en travers levés par le géomètre. Il interpole des profils supplémentaires pour rester fidèle à la géométrie du lit du fleuve.
La schématisation filaire est utilisée pour représenter l'ensemble du lit mineur de l'Ouche et de ses principaux affluents et des bras de dérivation.

3.2.3.3 Schématisation bi-dimensionnelle

La schématisation bidimensionnelle est retenue sur les secteurs de lit majeur où des vitesses d’écoulements conséquentes sont observées ; la quasi – totalité de la vallée est ainsi modélisée par cette représentation. Les voiries assurant un écoulement des eaux en lit majeur sont notamment représentées par un maillage très fin.
La rugosité du fond est définie en fonction du type de terrain ou du mode d'occupation de sol en place.
Les berges de chaque lit de cours d’eau sont connectées au domaine bidimensionnel par l’intermédiaire de liaisons spécifiques apparentées à des déversoirs, la cote et la largeur de chacune étant fonction du profil de la berge.
Les singularités ponctuelles au droit des franchissements routiers ou ferrés sont schématisées par :
- des lois d’orifice pour les buses et les ponceaux de décharge,
- des lois de seuil pour les routes, chemins, digues, murets, … submersibles.

3.2.4 Définition des apports hydrologiques

Les débits des différents cours d’eau sont injectés en amont du modèle ; les hydrogrammes correspondant à chacun des scénarios hydrologiques modélisés sont issus de l’analyse hydrologique.

3.2.5 Calage du modèle

Le modèle est calé sur la crue de mars 2001, par comparaison avec les repères de crue relevés sur le terrain dans le cadre d’enquêtes spécifiques effectuées auprès des riverains et de la commune.